
Event Mixing

Rob Kutschke, Fermilab
Software and Simulation Meeting

October 5, 2011

Mu2e-doc-1874-v1

The Problem

•  Per proton pulse (Mu2e-doc-1174, Mu2e-doc-1865)
–  35,988 DIO
–  5,560 ejected protons
–  10,850,000 beam electrons
–  and lots more

•  How do we simulate all of this in time with a single
conversion electron?
–  CPU time required is huge, hours per event.
–  Memory limits, especially if we want to retain the full history of

leading to all hits.

•  The key to the answer:
–  Only a tiny fraction of background particles create any hits.

10/5/11 Kutschke/Simulations&Software 2

The Solution

•  Generate large samples of each background process
–  One generated particle per event.
–  With one exception, use the full phase space:

•  t > 500 ns
–  Send these events through G4.
–  Write out only events with a least one StepPointMC in the

detector(s) of interest.

•  When simulating signal events
–  Read in or generate one conversion electron
–  Overlay appropriate number of events from each of many

background streams.

10/5/11 Kutschke/Simulations&Software 3

DIO Examples
•  My jobs: /mu2e/data/outstage/kutschke/72785

–  Single track events generated: 250,000,000
–  Events with >0 hits in tracker: 129,060
–  0.000516 events with tracker hits per DIO

•  From Gianni:
–  35,988 DIO per proton pulse (Mu2e-doc 1774-v2)
–  22,456 with t>500 ns (62.4%)

•  22,456 × 0.000516 = 11.6
–  Draw 11.6 events per conversion electron from my

DIO background files.

10/5/11 Kutschke/Simulations&Software 4

Ejected Proton examples

•  My jobs: /mu2e/data/outstage/kutschke/72784
–  Single track events generated: 70,000,000
–  Events with >0 hits in tracker: 297,063
–  0.00424 events with hits in tracker per ejected proton

•  From Gianni: Mu2e-doc 1774-v2
–  5,560 ejected protons per proton pulse
–  3,513 with t>500 ns (62.4%)

•  5,560 × 0.00424 = 14.9
–  Draw 14.9 ejected protons per conversion electron

from my ejected proton background files.

10/5/11 Kutschke/Simulations&Software 5

The Data Product View

10/5/11 Kutschke/Simulations&Software 6

Data Products Related to StrawHits

10/5/11 Kutschke/Simulations&Software 7

GenParticles

SimParticles StepPointMCs (tracker) StatusG4

StrawHits StrawHitMCTruth PtrStepPointMCVectors

generate

g4run

makeSH

art::Ptr<>

module label

Data like.
Input to TrkPatRec

Legend

Event Mixing

10/5/11 Kutschke/Simulations&Software 8

Gens Sims Steps StatusG4

Event 1

Event 2

Event 3

Event 4

DIO Background File

GenParticles
Event 1
Event 2
Event 3

SimParticles
Event 1
Event 2
Event 3

StepPoints
Event 1
Event 2
Event 3

For each signal event, choose N
events from the DIO background file,
mix the N GenParticleCollections in
the file into 1 in memory.

And so on for other data products.

Renumbers items for events 2, 3 …

Therefore: reseat all art::Ptr objects.

Data Products
in memory

Example: StepPointMCs

10/5/11 Kutschke/Simulations&Software 9

Gens Sims Steps StatusG4

Event 1 3

Event 2 2

Event 3 4

DIO Background File

StepPointMCs
0 – (1,0)
1 – (1,1)
2 – (1,2)
3 – (2,0)
4 – (2,1)
5 – (3,0)
6 – (3,1)
7 – (3,2)
8 – (3,3)

Size of StepPointMCCollection

StepPointMCCollection in Memory

(n,m) =
 (event # in bg file, index into the collection)

Mixing: Signal, DIO, Ejected Protons

10/5/11 Kutschke/Simulations&Software 10

GenParticles

SimParticles StepPointMCs (tracker) StatusG4

GenParticles

SimParticles StepPointMCs (tracker) StatusG4

GenParticles

SimParticles StepPointMCs (tracker) StatusG4

1 conversion electron

N1 Mixed-in DIO events

N2 Mixed-in ejected proton events

StrawHits From Multiple StepPointMCs

10/5/11 Kutschke/Simulations&Software 11

Input to TrkPatRec

StepPointMCs (signal)

StepPointMCs (DIO)

StepPointMCs (protons)

StrawHits StrawHitMCTruth PtrStepPointMCVectors

SimParticles (signal) SimParticles (DIO) SimParticles (protons)

I hope that TrkPatRec needs no changes!

Another View

10/5/11 Kutschke/Simulations&Software 12

Input to TrkPatRec

StepPointMCs (signal)

mixDIO

makeSH

source or g4run

StepPointMCs (DIO BG)

StepPointMCs (protons) mixProtons

StrawHits StrawHitMCTruth PtrStepPointMCVectors

Configuring a Mixing Module

•  Mean
–  If positive, specifies mean of a Poisson distribution.
–  If negative, mix in exactly |mean| events per primary event.

•  fileNames
–  Arbitrary number allowed.
–  The job shutsdown gracefully if inputs run out (via a throw).

10/5/11 Kutschke/Simulations&Software 13

dioMixer: {
 module_type : MixMCEvents
 mean : 11.6
 fileNames : [”dioFile1.root”, “dioFile2.root”, “dioFile3.root”]
 readMode : sequential
 seed : [13579]
}

Configuring a Mixing Module

•  readMode:
–  sequential/random
–  I have not tried random.

•  seed
–  Used to seed the Poisson distribution.
–  99% sure it is optional.

10/5/11 Kutschke/Simulations&Software 14

Example .fcl File Fragment

10/5/11 Kutschke/Simulations&Software 15

physics :{
 producers:{ makeSH : @local::makeSH }

 filters: {
 dioMixer: {
 module_type : MixMCEvents
 mean : 11.6
 fileNames : [”dioFile1.root”, “dioFile2.root”, “dioFile3.root”]
 readMode : sequential
 seed : [13579]
 }
 protonMixer: {
 module_type : MixMCEvents
 mean : 14.9
 fileNames : [“protonFile1.root”, “protonFile2.root”]
 readMode : sequential
 seed : [24680]
 }
 }
 p1 : [dioMixer, protonMixer, makeSH] trigger_paths : [p1]
 e1 : [outfile] end_paths : [e1]
}

Suppose that source is a file of
pure conversion electron events

Comments on Previous Slides

•  Can mix-in arbitrary number of streams.
•  Signal events can be:

–  Read from source
–  Generated in same job
–  Just another mixing stream (with mean : -1).
–  No signal event, to get a pure BG sample.

10/5/11 Kutschke/Simulations&Software 16

Why 2 Instances of MixMCEvents?

•  Why not just one instance of a mixing module that can
read multiple input streams?

•  The existing solution has a clean separation of
responsibilities:
–  Code related to persistency (ROOT IO) that can be written by

computer professionals who are unaware of the internal details
of Mu2e data product classes.

–  Mu2e specific pieces that can be written by us. We can be
entirely unaware of the details of persistency.

•  Other solutions, which allowed multiple input streams
within one mixing module, compromised this separation
of responsibilities.

10/5/11 Kutschke/Simulations&Software 17

Separating Responsibilities

•  See: EventMixing/src/MixMCEvents_module.cc
•  Philosophy:

–  We write callback functions to do the Mu2e specific parts
–  We register the callbacks with an art-written module that does all

of the art parts.
–  art does the rest of the work and calls our code as needed.
–  art also provides a toolkit to help us do our work.

•  Our class: mu2e::MixMCEventsDetail
–  The callback functions are methods of this class.

•  The mixing module class is:
–  art::MixFilter<mu2e::MixMCEventsDetail>

10/5/11 Kutschke/Simulations&Software 18

Configuring a Mixing Module

•  mean
–  Processed by mu2e code

•  fileNames, readMode, seed
–  Processed by the art::MixFilter template

•  I may add more arguments processed by our code.

10/5/11 Kutschke/Simulations&Software 19

dioMixer: {
 module_type : MixMCEvents
 mean : 11.6
 fileNames : [”dioFile1.root”, “dioFile2.root”, “dioFile3.root”]
 readMode : sequential
 seed : [13579]
}

class MixMCEventsDetail {
 ….
 bool mixGenParticles (….);
 ….
 private:
 ….
 std::vector<size_t> genOffsets_;
}

bool mu2e::MixMCEventsDetail::
mixGenParticles(std::vector< mu2e::GenParticleCollection const *> const& in,
 mu2e::GenParticleCollection& out,
 art::PtrRemapper const &){

 art::flattenCollections(in, out, genOffsets_);

 return true;
}

A Mixing Method

10/5/11 Kutschke/Simulations&Software 20

Comments on Previous Slide

•  genOffsets_ records the boundaries, within the
output collection, at which the new events begin.
–  Used in downstream code to update

art::Ptr<GenParticle>.

10/5/11 Kutschke/Simulations&Software 21

Summary and Conclusions

•  Event mixing is working but still has a few rough edges.
–  Requires the art v0_7_16
–  art v0_7_16 is available for mu2egpvm02 but not the SLF4

machines.

•  Expect it to be ready for use in a few days.

10/5/11 Kutschke/Simulations&Software 22

Backup Slides

10/5/11 Kutschke/Simulations&Software 23

Steps 1 and 2

10/5/11 Kutschke/Simulations&Software 24

•  Step 1: protons on production target
•  Save muons entering DS

•  Step 2: output of step 1.
•  Save time and position of muons stopping in foils

Generated Time Distribution

10/5/11 Kutschke/Simulations&Software 25

•  Muon stopping time
convoluted with an
exponential decay.

•  … and with proton pulse
shape if needed.

•  Fold time into the first
cycle of the muon
beamline.

•  Restart from the
beginning if t < 500 ns. 62.4% t > 500 ns

